Charles-Antoine Poulin

References :

Capter le bois / détecter la forêt


PLANCHE 1 – Nelson Marlborough Institute of Art Building (Nouvelle-Zélande)

Fig. 1 Tremblements de terre (Nouvelle-Zélande)

United States Geological Survey. (2021). Earthquake hazards program. USGS. https://earthquake.usgs.gov/ fdsnws/event/1/query.geojson?starttime=2010-01 01%2000:00:00&endtime=2021-04-05%2023:59:59&maxlati- tude=-32.194&minlatitude= 49.11&maxlongitude=186.328&minlongitude=162.422&minmagnitude=2.5&orderby=ma- gnitude-asc.

TDVL (Image centrale, droite)
Tyco Electronics [TE Connectivity]. (2017). Linear Variable Differential Transformer (LVDT) – Tutorial. https://www.te.com/usa-en/industries/sensor-solutions/insights/lvdt-tutorial.html

Fig. 2 (Capteurs installés)
Holden, T., Devereux, C., Haydon, S., Buchanan, A. et Pampanin, S. (2016). NMIT Arts & Media Building – Innovative structural design of a three storey post-tensioned timber building. Case studies in Structural Engineering, 6, 76-83. http://dx.doi.org/10.1016/j.csse.2016.06.003

Morris, H. W., Uma, S. R., Gledhill, K., Omenzetter, P. et Worth, M. (2010). The Long Term Instrumentation of a Timber Building in Nelson NZ - the need for standardization. Academia. Récupéré le 1er avril 2021 depuis https://www.academia.edu/17840945/The_long_term_
instrumentation_of_a_timber_building_in_Nelson_NZ_the_need_for_standardization

Morris, H. W., Zhu, M. et Wang, M. (2012). The long term instrumentation of the NMIT Arts Building – EXPAN Shear Walls. New Zealand Timber Design Journal, 20(1), 13-24. Récupéré le 1er avril 2021 depuis https://www.timberdesign.org.nz/wp-content/uploads/2018/05/TDJ-Vol-20-Issue-1-p13-to-24.pdf

PLANCHE 2 - Brock Commons Tallwood House (Canada)

Fig. 1 Surveillance de la qualité

Schmidt, E. L., Riggio, M., Barbosa, A. R. et Mugabo, I. (2019). Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Building and Environment, 148, 609-622. https://doi.org/10.1016/j.buildenv.2018.11.038

Fig. 2 Position des capteurs

Mustafa, G. (12 juin 2017). Methods of Practices for Monitoring Vertical Movement and Moisture Performance of Wood Structures [Session de conférence]. IUFRO Division 5. https://docs.wixstatic.com/ugd/80b50b_adc4c5a3a9d945a7848542e8c051f814.pdf

Réseautage des données

Bass, E. J., Riggio, M. et Barbosa, A. R. (2021). A methodological approach for structural health monitoring of mass-timber buildings under construction. Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121153

Fig. 3 Capteurs installés

The University of British Columbia. (2020). Operational performance of cross-laminated timber : Brock Commons Tallwood House. https://sustain.ubc.ca/sites/default/files/UBC%20Brock%
20Commons%20Structural%20Performance%20Report%20Sept%202020.pdf

PLANCHE 3 - George Peavy Hall Building (États-Unis)

Fig. 1 Économie de matière pour résistance égale

Frere Lumbers. (n.d.). MPP’s Specifications. Accédé le 30 mars 2021 depuis https://frereslumber.com/specifications/.

Fig. 2 Capteurs installés

Bass, E. J., Riggio, M. et Barbosa, A. R. (2021). A methodological approach for structural health monitoring of mass-timber buildings under construction. Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121153

Baas, E. J., Riggio, M. et Barbosa, A. R. (2021). Structural health monitoring data collected during construction of a mass-timber building with a data platform for analysis. Data in Brief, 35. https://doi.org/10.1016/j.dib.2021.106845.

PLANCHE 4 - Taiyuan Botanical Gardens (Chine)

Fig. 1 Usage historique

Charest, P., Potvin, A., Demers, C. M. H. et Ménard, S. (2019). Assessing the complexity of Timber Gridshells in Architecture through Shape, Structure and Material Classification. BioRessources, 14 (1), 1364-1378. https://doi.org/10.15376/biores.14.1.1364-1378.

Superposition des trois couches de la structure

Epp, L. et Sullivan, B. (2020). Long-span timber gridshell – The Taiyuan Domes. New Zealand Timber Design Journal, 28 (1), 18-26. Accédé le 3 avril 2021 depuis https://www.timberdesign.org.nz/wp-content/uploads/2020/05/2020Vol28Iss1-Epp-Paper.pdf

Mécanisme de tension de la structure

StructureCraft. (2021). Taiyuan Botanical Garden Domes. Accédé le 30 mars 2021 depuis https://structurecraft.com/projects/taiyuan-domes.


PLANCHE 5 - Arch_Tech_Lab (Suisse)

Découpe, placement et clouage

Apolinarska, A. A. (2018). Complex Timber Structures from Simple Elements Computational Design of Novel Bar Structures for Robotic Fabrication and Assembly. (Publication 24771) [Dissertation de doctorat, ETH Zurich]. ETH Zürich Research Collection.

Fragmentation des poutres de toit

Apolinarska, A. A. (2018). Complex Timber Structures from Simple Elements Computational Design of Novel Bar Structures for Robotic Fabrication and Assembly. (Publication 24771) [Dissertation de doctorat, ETH Zurich]. ETH Zürich Research Collection.

Axonométrie du projet

Erne. (2021). Arch_Tec_Lab, ETH Zürich. Accédé le 31 mars 2021 depuis https://www.erne.net/fr/references/reference-detail/reference/arch-tec-lab/.

PLANCHE 6 - Urbach Tower (Allemagne)

Hygroscopie du bois et cambrure au séchage

Aldinger, L., Bechert, S., Wood, D., Knippers, J. et Menges, A. (2020). Design and Structural Modelling of Surface-Active Timber Structures Made from Curved CLT – Urbach Tower, Remstal Gartenschau 2019. Dans Gengnagel, C., Baverel, O., Burry, J., Ramsgaard, T. M. et Weinzierl, S. (éditeurs). Impact: Design With All Senses (pp. 419-432). Design Modelling Symposium Berlin. https://link.springer.com/content/pdf/10.1007%2F978-3-030-29829-6_33.pdf

Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A. et Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5 (9). https://doi.org/10.1126/sciadv.aax1311